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第1章　パワーデバイスの基本動作から最新開発動向、課題と展望

九州大学　　寺島　知秀

はじめに
パワーデバイスとは何か?これを一言で言うならば電力を伝達、あるいは様々なエネルギーに変換

するために使われるトランジスタ及びダイオードである。これらは主にシリコンウェハに対する様々

なプロセスを経て作られているという意味において情報処理を担う集積回路（LSI）と極めて類似し

ているが、LSIが本質的には物理量では無く情報を取り扱い、その手法として半導体の性質を利用す

る方式が最も優れているという状況であるのに対し、パワーデバイスは電力という物理量自体を取り

扱う事が目的であり、これを実現するものが特性的な必然性で半導体になるという面で大きな違いが

ある。

また、人類が築いた文明、それに伴う生活の変化において電化・電動化が決定的な役割を果たして

おり（図1）、これらを縁の下の力持ちとして支えてきたパワーデバイスは、昨今のモバイル機器、

各種充電アダプターでの小型・軽量化、EV実用化、脱炭素等において重要性が増し続けている。

図1　電化・電動化の歴史

1.　パワーデバイスの基本動作
パワーデバイスの動作は、信号増幅と電力変換の二つに大別される。どちらも電力を扱っているが、

その目的が異なる事に連動して要求性能も異なってくる。

1.1　信号増幅

これは典型的には拡声器のような、小電力信号をそのまま大電力化してスピーカー等の機器を駆動
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するような動作である。この動作では図2のようにパワーデバイス（トランジスタ）の特性をそのま

ま利用する形が基本である。この動作は高周波領域ではAM/FM放送、さらに高周波ではGaN等の高

周波動作に優れるパワーデバイス等を使用し数10	GHzに至る情報通信領域まで広がっている。

この動作では動作状態において必然的にパワーデバイスに電圧と電流が同時に印加され自己発熱が

避けがたいが、第一に出力信号の忠実性を重視し、次に熱対策の順になる。また高周波領域ではゲー

トドレイン間容量の低減、チャンネル部を流れる電子の高速化等、パワーデバイス自体の高性能化が

重要になる。

図2　信号増幅のイメージ

1.2　電力変換

これは電源からの電力を使用目的に適した形態に変換する動作であり、主なものとしてDC/DC変

換、モーター ･アクチュエーター駆動などがある。この領域は現在パワーデバイス市場の大半を占め

ており、図1で示した発展に大きく寄与した。電力変換では変換に要するエネルギー消費、すなわち

パワーデバイスの自己発熱を可能な限り抑える事が最も重要である。そのため図3に示すようにパ

ワーデバイス（トランジスタ）をスイッチのように動作させる事で自己発熱を最小化している。

図3　電力変換のイメージ
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図4はこの動作の最もシンプルな事例である。（a）は古典的な方法であり言うまでも無く可変抵抗で

大きな電力ロスが発生する。（b）ではトランジスタに対してインダクターと電球が直列に繋がり、ト

ランジスタがオフした時の電流路としてダイオードが接続されている。トランジスタがオン状態では

電流が徐々に上昇し、トランジスタがオフになるとダイオードを介して電流が還流しつつインダクター

に蓄積されたエネルギーが電球で消費され電流が徐々に低下する。そしてトランジスタのオン/オフの

時間比率によって電球の明るさが調整できる。この一連の動作においてトランジスタはオン状態で電

圧の大半がインダクターに加わり、オフ状態では電流が流れない。したがって理想的にはトランジス

タ自体のエネルギーロスがほとんど無い状態で電力変換が実現される。実際の電力変換回路は様々な

形式があるが、基本的にはこれと同様の動きでトランジスタ自身の電力消費を最小に抑えている。

図4　電力変換回路の基本動作

2. パワーデバイスの発展
ここからはパワーデバイスの主要用途である電力変換を中心として説明する。パワーデバイスは電

力という物理量自体を取り扱う。そして電力の大きさに応じて前述の電力変換回路の動作が異なる。

このため、電力の大きさに応じて最適なデバイスも異なる（図5）。この面において主に情報処理を

目的としたLSIがCMOS微細化を軸とした一本道に近いのに対し、パワーデバイスでは領域毎に様々

なデバイスが平行して発展してきた。

また、電力変換機器のロス低減に伴い放熱能力の許す限りシステムを小型化するのは商品競争力に

おいて必然であり、逆に言うとパワーデバイスの性能向上と共に発熱密度も上昇し最終的には発熱に

よって性能向上が制限されてくる。これはCPUのクロック周波数向上による性能向上が同様に発熱
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