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001

第 1章　プラスチックリサイクル技術の技術的潮流と将来展望 発刊にあたって　データ駆動化学が私たちに教えること

発刊にあたって　データ駆動化学が私たちに教えること
奈良先端科学技術大学院大学/東京大学　船津　公人

はじめに
　1965年、スタンフォード大学でDENDRALプロジェクトがスタートした1）。質量分析装置から得ら

れるデータを分析し、有機化学の知識も使って構造未知の有機化合物の構造を決定することを目的に、

Edward A. Feigenbaum、Bruce Buchanan、Joshua Lederberg、Carl Djerassi による化学を対象とし

た世界初の挑戦的プロジェクトであった。ソフトウェアとしてのDENDRALは、化学者が行うような

判断と問題解決の過程を自動化したものであるため、世界初のエキスパートシステム、人工知能と言

われている。

　ここで改めてDENDRALの考え方について述べることにしたい。DENDRALの基本は、 構造推定の

際に化学者が利用する知識表現と複雑な構造決定の論理網を一つ一つ辿りながら、その思考の過程を

コンピュータに実現させたものである。いわば順方向の取組みである。だとすれば知識の量や表現の

仕方、その知識の利用のための知識（仮説）の在り方で結論が決まってくる。人工知能と言いながら

も人の行っていることを、 その時点での限られた知識や知識利用の論理によってなぞっているに過ぎ

なかったといえる。その知識や使い方に誤りや欠落があれば当然ながら正解の候補構造は提示されな

いのである。つまり、このシステム開発に関わった研究者の知識とその利用の論理の投影でしかなかっ

た。いわば単なる知識適用の手順であって、制約を設けたごく限られた対象での利用はできても実用

にはほど遠かったのである。

　DENDRALが抱えていた問題を克服するために、観測データに矛盾しないすべての候補構造を「生

成する仕組み」が考えられた。たとえば、構造未知の有機化合物の構造推定のために分子式しか分

かっていなければその構造異性体を列挙することになるが、その中には必ず正解は含まれる。一例と

して分子式C6H6のみが与えられた場合を考えてみよう。 列挙されるべき構想異性体は図1に示した

217個である。この中には必ず求める正解は含まれている。分子式の他にC13-NMRスペクトルデータ

（化学シフト136 ppmにダブレットのシグナルが1本）が与えられると、それらに矛盾しない候補構

造として図1中に赤枠で囲んだベンゼンの構造のみが生成される。決して正解構造を取り逃すことな

く候補構造を提示できる点でDENDRALとはデータの活用の戦略が全く異なっていることが分かる。

この考え方は、我が国では佐々木愼一と著者のCHEMICS2）として、またアメリカではM. E. Munkの

CASE3）として結実し実用レベルにまで達した。この構造生成の考え方は、分子式やスペクトルデー

タという特性を満足する候補構造を求めるという、まさに逆問題への取組みそのものであることから、 

のちに構造活性（物性）相関モデルの逆解析の考え方へと発展し、 医薬品や材料候補構造の生成とし

て、いまや研究・開発の中核的な思想となっている4, 5）。まさに逆解析こそがデータ駆動化学に求め

られる重要事項であると理解され始めてきたのである。こうした歩みの中で、データ駆動化学はもは

や研究・開発にとって不可欠なコンセプトとして大きな飛躍を遂げてきた。
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図1　分子式C6H6の構造異性体

　現在、新規分子・材料開発のためにデータ駆動の考えが大きく広がり、マテリアルズインフォマティ

クスおよび後述するプロセスインフォマティクスが世界的な広がりを見せている。40年以上に亘り、

データ駆動化学の分野で研究を進めてきた者として嬉しい気持ちでこの様子を見ている。一方、ここ

で改めて考えたいことは、こうしたデータ駆動化学の展開の中で、私たちが求めるものは一体何なの

かということである。データや情報などを用いて目的の特性を実現する新しい分子や材料を設計し、

その作り方を設計、制御することは確かに大きな目的ではある。ただ、その目的の実現のために便利

さや効率性だけが求められるのであれば、それは作業でしかなく必ずしもサイエンスにはつながらな

い。サイエンスにつながるには解釈性と応用性が重要である。こうしたデータに語らせる仕組みを作

るには、課題の構造の理解と仮説の設定、そしてデータ駆動により何をしたいのかを明確にすること

が必要となる。当然ながらこのためにはその分野の多くの知識とそれにもとづく人々の深い洞察が求

められることを改めて理解しなければならない。

1. データ駆動化学の守備範囲の概要
ここで現在のデータ駆動化学の守備範囲を見ておこう。図2はその概要である。所望の物性や機能

を持つ材料や分子を得たいと考えると、それはまず「何を作るか」から始まる。分子設計・材料設計

に相当するが、ここで構造と物性との間の関係性のモデル化を検討する。モデル化が上手くいけば、

そのモデルの逆解析を通して目的の物性を満足すると考えられる材料構造や分子構造の候補を提案す

ることになる。この逆解析こそがデータ駆動化学に求められる重要な役割である。

　この逆解析を通して仮想的に様々な材料候補が得られるが、最終的に一般化学品として世の中に提

供する場合には安全性評価が不可欠となる。「それは作って良いのか」という問いである。画期的な
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第 1章　プラスチックリサイクル技術の技術的潮流と将来展望 発刊にあたって　データ駆動化学が私たちに教えること

機能性化学品を早期に市場投入し、国際競争力を確保するためには,合成研究などの具体的な開発作

業に着手する前にこれら候補の安全性スクリーニングを実施することで、可能性のある化学品開発の

間口を広くとることが重要となる6）。

図2　データ駆動化学の概要

　この安全性評価を経た後は「それをどう作るか」に移る。ここでは合成経路設計が該当する。その

あとは「それはできたか」を確認する構造解析となる。ここまでくると「製品としてどう作るか」が

課題となる。化学プラントなどを利用して化学製品を製造するが、ここで大切なことは品質を維持し

て安定した製造を続けることである。製造される製品の品質（物性、特性等）をリアルタイムに確認

し、求められる品質から外れそうであれば、そうならないようにプラントを制御しなければならない。

しかしながら、従来このリアルタイムによる確認は困難で、製造中の製品をサンプリングして実験室

で品質を確認していた。これでは結果が出るまでに時間がかかり、その間化学プラントからどのよう

な製品が製造されているのかは把握できないことになる。こうした問題を解決するために、化学プラ

ントでオンライン・リアルタイムに簡単に計測できる温度、圧力や流量というプロセス変数を用いて、

オンライン・リアルタイム監視が難しい製品濃度や物性などをリアルタイムに予測できる仕組みとし

てソフトセンサーが開発され、現在多くの化学プラント、その他の製造装置などで利用されている7）。

　こうして製造された製品は社会に提供されていくが、いずれ使用済みとなり廃棄される。ここで必

要となる概念は、「どう物質循環させるか」である。これは廃棄物の概念を捨ててこれらの回収品（未

利用資源とでも呼ぶことにしよう）をどのように物質循環サイクルに乗せてゼロエミッションを実現

するかという問いである。ここでも未利用資源の量とその物質変換技術、そして再生品利用のニーズ
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